inorganic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Uk Lee

Department of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong Nam-ku, Pusan 608-737, Republic of Korea

Correspondence e-mail: uklee@pknu.ac.kr

Key indicators

Single-crystal X-ray study T = 298 K Mean σ (V–O) = 0.003 Å H-atom completeness 89% R factor = 0.045 wR factor = 0.124 Data-to-parameter ratio = 16.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Dipotassium tetrasodium decavanadate octadecahydrate

The title double salt, $K_2Na_4[V_{10}O_{28}]$ ·18H₂O, crystallizes with a decavanadate polyanion that has twofold crystallographic symmetry. All atoms in the structure are on general positions, except two Na atoms which are located on a twofold axis. In the crystal structure, chains made up of edge- and face-sharing [KO₉] and [NaO₆] polyhedra are interconnected by the decavanadate anions to form a three-dimensional network. The decavanadate polyanion exhibits the typical ranges in V···V and the four types of V–O distances.

Comment

Recently, some alkali metal decavanadate double salts, *viz*. {[LiNa₂(H₂O)₉]₂[V₁₀O₂₈]_{*h*} (Ma *et al.*, 2005) and Na_{5.22}Li_{0.78}-[V₁₀O₂₈]·20H₂O (Ksiksi *et al.*, 2005), have been reported. We chose the double salt system of K⁺ and Na⁺ and succeeded in growing crystals of K₄Na₂[V₁₀O₂₈]·10H₂O (Lee & Joo, 2003) and K₄Na[HV₁₀O₂₈]·10H₂O (Lee & Joo, 2004), the latter being the first monoprotonated decavanadate species to be reported in the solid state. K₄Na₂[V₁₀O₂₈]·10H₂O crystallizes in space group *P*1 and its decavanadate polyanion has 1 symmetry, whereas K₄Na[HV₁₀O₂₈]·10H₂O crystallizes in space group *P*2/*n* and its decavanadate anion has 2 symmetry. In the course of these investigations, we obtained the title compound, K₂Na₄[V₁₀O₂₈]·18H₂O, (I), at a pH of 6.8, and present its crystal ctructure here.

Figure 1

Part of the structure of (I), showing the coordination polyhedra around the cations and the decavanadate polyanion. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) $\frac{3}{2} - x$, $\frac{1}{2} - y$, 1 - z; (iii) $\frac{1}{2} + x$, 1/2 + y, z; (iv) 1 - x, y, $\frac{1}{2} - z$; (v) x, 1 - y, $z - \frac{1}{2}$. (vi) $\frac{3}{2} - x$, $\frac{3}{2} - y$, 1 - z; (vii) $x - \frac{1}{2}$, $\frac{3}{2} - y$, $z - \frac{1}{2}$.]

Received 11 July 2006 Accepted 28 July 2006

© 2006 International Union of Crystallography All rights reserved

Figure 2

A polyhedral model, in a projection down the *a* axis, for the linear network made up of [KO₉] and [NaO₆] polyhedra. [Symmetry codes: (i) $1 - x, y, \frac{1}{2} - z; (ii) \frac{3}{2} - x, \frac{3}{2} - y, 1 - z; (iii) x - \frac{1}{2}, \frac{3}{2} - y, z - \frac{1}{2}; (iv) \frac{1}{2} + x, \frac{3}{2} - y, \frac{1}{2} + z; (v) 2 - x, y, \frac{3}{2} - z.]$

Fig. 1 shows part of the structure of (I) and the labelling scheme for the decavanadate anion. The asymmetric unit in the decavanadate polyanion consists of five independent [VO₆] octahedra sharing edges; the crystallograpic twofold axis generates the other half of the polyanion. The $V \cdots V$ distances within the polyanion are in the range 3.060 (1)-3.169 (1) A; the V–O bond lengths range between 1.607 (3) and 2.331 (3) Å and are given in Table 1. The O atoms in the decayanadate anions are the same terminal (O_t) and bridging (O_b) types as those classified in the previous report by Lee *et* al. (2003). All atoms in (I) are on general positions, except atoms Na2 and Na3, which are located on a twofold axis.

The K^+ ion is coordinated by nine O atoms, $[K(O_c)(O_t)_4(O_w)_4]$, and the three Na⁺ ions are coordinated by six O atoms each, viz. [Na1(O_w)₆], [Na2(O_w)₄(O_b)₂] and $[Na3(O_w)_4(O_t)_2]$. The bond-valence sum (Brown & Altermatt, 1985; Brese & O'Keeffe, 1991) of K⁺ is 0.939, and those of atoms Na1⁺, Na2⁺ and Na3⁺ are 1.203, 1.136 and 1.224, respectively.

The O_w9 water molecule does not coordinate to any cations, but it is hydrogen bonded to atom $O_b6(1 - x, y, \frac{1}{2} - z)$ at a distance of 3.054 (6) Å. By sharing edges and faces, the $[KO_9]$ and $[NaO_6]$ polyhedra form linear chains extending parallel to [101] (Fig. 2). These chains are made up of eight-membered rings, K/Na1/Na2/Na3/Kⁱⁱ/Na1ⁱⁱ/Naⁱⁱ/Na3ⁱⁱ (symmetry code as in Fig. 2), and are interconnected by the decavanadate anions to form a three-dimensional network (Fig. 3).

Figure 3 A polyhedral representation of the unit-cell contents of (I), viewed approximately down the b axis.

Table 2 lists the remaining hydrogen-bond distances involving solvent water molecules with $O \cdots O$ less than 3.1 Å.

Experimental

Commercially available reagent grade KVO₃ (Aldrich), NaCl (Junsei) and HNO₃ (Junsei) were used. Compound (I) was crystallized by mixing hot aqueous solutions of KVO₃ (2.0 g in 40 ml) and NaCl (1.7 g in 20 ml), and adjusting the pH to about 6.8 by adding a 3M HNO₃ solution dropwise while vigorously stirring. The solution was concentrated to about 20 ml in a water bath. After 1 d, palebrown crystals of pseudo-hexagonal habit were isolated at room temperature. Thermogravimetric analysis, carried out in a flow of air, showed a weight loss of 8.51% in a single broad step between 315 and 573 K.

Crystal data

 $Na_4K_2[V_{10}O_{28}] \cdot 18H_2O$ Z = 4 $M_r = 1451.85$ $D_x = 2.391 \text{ Mg m}^{-3}$ Monoclinic, C2/c Mo $K\alpha$ radiation a = 17.738 (2) Å $\mu = 2.59 \text{ mm}^-$ T = 298 (2) Kb = 12.636(1) Å c = 20.042 (5) Å $\beta = 116.114 \ (9)^{\circ}$ V = 4033.6 (11) Å³

Data collection

Stoe Stadi-4 diffractometer $\omega/2\theta$ scans Absorption correction: numerical (X-SHAPE; Stoe & Cie, 1996)

 $T_{\rm min}=0.192,\ T_{\rm max}=0.234$

4595 measured reflections

Hexagonal prism, pale brown $0.68 \times 0.62 \times 0.53~\text{mm}$

 $\theta_{\rm max} = 27.5^{\circ}$ 3 standard reflections frequency: 60 min intensity decay: 3.8%

4595 independent reflections

3143 reflections with $I > 2\sigma(I)$

inorganic papers

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0413P)^2$
$R[F^2 > 2\sigma(F^2)] = 0.046$	+ 29.2336P]
$wR(F^2) = 0.124$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.10	$(\Delta/\sigma)_{\rm max} < 0.001$
4595 reflections	$\Delta \rho_{\rm max} = 0.62 \ {\rm e} \ {\rm \AA}^{-3}$
288 parameters	$\Delta \rho_{\rm min} = -0.55 \ {\rm e} \ {\rm \AA}^{-3}$
H atoms treated by a mixture of	Extinction correction: SHELXL97
independent and constrained	(Sheldrick, 1997)
refinement	Extinction coefficient: 0.00091 (5)
Table 1	

Selected bond lengths (Å).				
	Selected	bond	lengths	(Å).

$V1 \cdot \cdot \cdot V2$	3.078 (1)	V4-OB6	1.809 (3)
$V1 \cdots V3^i$	3.083 (1)	V4 - OB7	1.862 (3)
$V1 \cdots V4$	3.169(1)	V4-OT13	1.610 (3)
$V1 \cdots V5$	3.150 (1)	V5-OH1	2.236 (3)
$V2 \cdot \cdot \cdot V3$	3.090(1)	V5–OC2 ⁱ	1.994 (3)
$V2 \cdot \cdot \cdot V4$	3.116 (1)	V5-OC3	2.009 (3)
$V2 \cdot \cdot \cdot V5$	3.122 (1)	V5-OB8	1.839 (3)
$V3 \cdot \cdot \cdot V4$	3.123 (1)	V5-OB9	1.818 (3)
$V3 \cdot \cdot \cdot V5$	3.124 (1)	V5-OT14	1.617 (3)
$V4 \cdot \cdot \cdot V5^i$	3.060(1)	K-OW3	2.882 (4)
V1-OH1	2.123 (3)	K-OW4	2.885 (5)
V1-OH1 ⁱ	2.125 (3)	$K - OT13^{i}$	2.931 (4)
V1-OC2	1.958 (3)	$K - OT11^{ii}$	2.947 (4)
V1-OC3	1.892 (3)	$K - OT12^{iii}$	2.990 (4)
V1-OB4	1.692 (3)	K-OW1	3.028 (6)
V1-OB10	1.699 (3)	K-OW2	3.079 (6)
V2-OH1	2.331 (3)	K-OT14	2.933 (4)
V2-OB4	2.034 (3)	K - OC3	3.111 (3)
V2-OB5	1.839 (3)	Na1-OW3	2.387 (4)
V2-OB6	1.891 (3)	Na1-OW2	2.383 (6)
V2-OB8	1.865 (3)	Na1-OW7	2.399 (4)
V2-OT11	1.607 (3)	Na1-OW4	2.399 (4)
V3-OH1	2.324 (3)	Na1-OW5	2.400 (4)
V3-OB5	1.843 (3)	Na1-OW6	2.419 (5)
V3-OB7	1.853 (3)	Na2-OW7	2.370 (4)
V3-OB9	1.901 (3)	Na2-OW8	2.402 (4)
$V3 - OB10^{i}$	2.049 (3)	Na2-OB10	2.497 (3)
V3-OT12	1.614 (3)	Na3–OW1 ^{iv}	2.338 (5)
V4-OH1	2.233 (3)	Na3–OW8	2.389 (4)
V4-OC2	1.975 (3)	$Na3 - OT12^{v}$	2.456 (3)
$V4-OC3^{i}$	2.025(3)		

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) $-x + \frac{3}{2}, -y + \frac{1}{2}, -z + 1$; (iii) $x + \frac{1}{2}, y + \frac{1}{2}, z$; (iv) $-x + \frac{3}{2}, -y + \frac{3}{2}, -z + 1$; (v) $x, -y + 1, z - \frac{1}{2}$.

Table 2

Hydrogen-bond geometry (Å, °).

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
$\begin{matrix} \hline OW1-HW1A\cdots OW5^{\rm vi}\\ OW1-HW1B\cdots OW9^{\rm ii}\\ OW2-HW2B\cdots OB7^{\rm iii}\\ OW2-HW2A\cdots OB7^{\rm i} \end{matrix}$	0.97	2.07	2.989 (7)	157
	0.97	2.33	3.082 (7)	134
	0.82 (7)	2.04 (7)	2.842 (5)	165 (7)
	0.77 (7)	2.13 (7)	2.892 (5)	171 (7)

$D-\mathrm{H}\cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$OW3-HW3A\cdots OB5^{iii}$	0.97	1.90	2.826 (5)	158
OW3−HW3B···OB5 ⁱⁱ	0.97	1.92	2.864 (5)	163
$OW4-HW4A\cdots OB8^{ii}$	0.97	1.93	2.820 (5)	151
$OW4-HW4B\cdots OB8$	0.97	2.24	2.956 (5)	130
$OW5-HW5B\cdots OB9^{ii}$	0.96	1.95	2.847 (5)	154
OW5−HW5A····OT13 ^{vii}	0.96	2.18	2.941 (5)	136
$OW6-HW6B\cdots OB6^{iii}$	0.97	2.16	2.871 (5)	130
$OW6-HW6A\cdots OT14^{v}$	0.95	2.58	2.908 (5)	101
$OW7 - HW7A \cdots OC2^{vii}$	0.97	1.90	2.838 (5)	161
$OW7 - HW7B \cdot \cdot \cdot OW9$	0.97	1.97	2.889 (7)	158
$OW8-HW8B\cdots OB9^{i}$	0.97	2.08	2.903 (5)	142

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) $-x + \frac{3}{2}, -y + \frac{1}{2}, -z + 1$; (iii) $x + \frac{1}{2}, y + \frac{1}{2}, z$; (v) $x, -y + 1, z - \frac{1}{2}$; (vi) $x, -y + 1, z + \frac{1}{2}$; (vii) $-x + 1, y, -z + \frac{1}{2}$.

A first data collection from a smaller crystal (0.44 \times 0.25 \times 0.25 mm) revealed a monoclinic cell with a = 17.737 (3), b = 12.635 (2) and c = 10.019 (2) Å, and $\beta = 116.11$ (1)°. Refinement in space group C2/m converged with similar R values, but some of the atoms were disordered. A second data collection using a larger crystal (this study) gave the correct space group (C2/c) with a doubling of the c axis compared with the first measurement. The H atoms of the water molecules were included in the final cycles of refinement in a riding model, with O—H distances ranging from 0.77 to 0.97 Å and O—H···O angles ranging from 100.8 to 171 (7)°. The H atoms of the OW9 water molecule could not be positioned geometrically or located in an electron-density map. They were therefore excluded from the refinement.

Data collection: *STADI4* (Stoe & Cie, 1996); cell refinement: *STADI4*; data reduction: *X-RED* (Stoe & Cie, 1996); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *DIAMOND* (Brandenburg, 1998); software used to prepare material for publication: *SHELXL97*.

References

Brandenburg, K. (1998). *DIAMOND*. Version 2.1. Crystal Impact GbR. Bonn, Germany.

Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.

Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Ksiksi, R., Graia, M. & Jouini, T. (2005). Acta Cryst. E61, i177-i179.
- Lee, U., Jung, Y. H. & Joo, H. C. (2003). Acta Cryst. E59, i72-i74.

Lee, U. & Joo, H.-C. (2003). Acta Cryst. E59, i122-i124.

- Lee, U. & Joo, H.-C. (2004). Acta Cryst. E60, i22-i24.
- Ma, C.-A., Xie, A.-L. & Wang, L.-B. (2005). Acta Cryst. E61, i185-i187.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Stoe & Cie (1996). STADI4 (Version 1.09), X-RED (Version 1.09) and X-SHAPE (Version 1.06). Stoe & Cie, Darmstadt, Germany.