Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Uk Lee

Department of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong Nam-ku, Pusan 608-737, Republic of Korea

Correspondence e-mail: uklee@pknu.ac.kr

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{V}-\mathrm{O})=0.003 \AA$
H -atom completeness 89%
R factor $=0.045$
$w R$ factor $=0.124$
Data-to-parameter ratio $=16.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Dipotassium tetrasodium decavanadate octadecahydrate

The title double salt, $\mathrm{K}_{2} \mathrm{Na}_{4}\left[\mathrm{~V}_{10} \mathrm{O}_{28}\right] \cdot 18 \mathrm{H}_{2} \mathrm{O}$, crystallizes with a decavanadate polyanion that has twofold crystallographic symmetry. All atoms in the structure are on general positions, except two Na atoms which are located on a twofold axis. In the crystal structure, chains made up of edge- and face-sharing $\left[\mathrm{KO}_{9}\right]$ and $\left[\mathrm{NaO}_{6}\right]$ polyhedra are interconnected by the decavanadate anions to form a three-dimensional network. The decavanadate polyanion exhibits the typical ranges in $\mathrm{V} \cdots \mathrm{V}$ and the four types of $\mathrm{V}-\mathrm{O}$ distances.

Comment

Recently, some alkali metal decavanadate double salts, viz. $\left\{\left[\mathrm{LiNa}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{9}\right]_{2}\left[\mathrm{~V}_{10} \mathrm{O}_{28}\right]\right\}_{n}$ (Ma et al., 2005) and $\mathrm{Na}_{5.22} \mathrm{Li}_{0.78^{-}}$ [$\left.\mathrm{V}_{10} \mathrm{O}_{28}\right] \cdot 20 \mathrm{H}_{2} \mathrm{O}$ (Ksiksi et al., 2005), have been reported. We chose the double salt system of K^{+}and Na^{+}and succeeded in growing crystals of $\mathrm{K}_{4} \mathrm{Na}_{2}\left[\mathrm{~V}_{10} \mathrm{O}_{28}\right] \cdot 10 \mathrm{H}_{2} \mathrm{O}$ (Lee \& Joo, 2003) and $\mathrm{K}_{4} \mathrm{Na}\left[\mathrm{HV}_{10} \mathrm{O}_{28}\right] \cdot 10 \mathrm{H}_{2} \mathrm{O}$ (Lee \& Joo, 2004), the latter being the first monoprotonated decavanadate species to be reported in the solid state. $\mathrm{K}_{4} \mathrm{Na}_{2}\left[\mathrm{~V}_{10} \mathrm{O}_{28}\right] \cdot 10 \mathrm{H}_{2} \mathrm{O}$ crystallizes in space group $P \overline{1}$ and its decavanadate polyanion has $\overline{1}$ symmetry, whereas $\mathrm{K}_{4} \mathrm{Na}\left[\mathrm{HV}_{10} \mathrm{O}_{28}\right] \cdot 10 \mathrm{H}_{2} \mathrm{O}$ crystallizes in space group $P 2 / n$ and its decavanadate anion has 2 symmetry. In the course of these investigations, we obtained the title compound, $\mathrm{K}_{2} \mathrm{Na}_{4}\left[\mathrm{~V}_{10} \mathrm{O}_{28}\right] \cdot 18 \mathrm{H}_{2} \mathrm{O}$, (I), at a pH of 6.8 , and present its crystal ctructure here.

Figure 1
Part of the structure of (I), showing the coordination polyhedra around the cations and the decavanadate polyanion. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) $1-x, 1-y$, $1-z$; (ii) $\frac{3}{2}-x, \frac{1}{2}-y, 1-z$; (iii) $\frac{1}{2}+x, 1 / 2+y, z$; (iv) $1-x, y, \frac{1}{2}-z$; (v) x, $1-y, z-\frac{1}{2}$. (vi) $\frac{3}{2}-x, \frac{3}{2}-y, 1-z$; (vii) $x-\frac{1}{2}, \frac{3}{2}-y, z-\frac{1}{2}$.]

Received 11 July 2006 Accepted 28 July 2006

Figure 2

A polyhedral model, in a projection down the a axis, for the linear network made up of $\left[\mathrm{KO}_{9}\right]$ and $\left[\mathrm{NaO}_{6}\right.$] polyhedra. [Symmetry codes: (i) $1-x, y, \frac{1}{2}-z$; (ii) $\frac{3}{2}-x, \frac{3}{2}-y, 1-z$; (iii) $x-\frac{1}{2}, \frac{3}{2}-y, z-\frac{1}{2}$; (iv) $\frac{1}{2}+x, \frac{3}{2}-y$, $\frac{1}{2}+z$; (v) $2-x, y, \frac{3}{2}-z$.]

Fig. 1 shows part of the structure of (I) and the labelling scheme for the decavanadate anion. The asymmetric unit in the decavanadate polyanion consists of five independent [VO_{6}] octahedra sharing edges; the crystallograpic twofold axis generates the other half of the polyanion. The V...V distances within the polyanion are in the range 3.060 (1)3.169 (1) \AA; the V-O bond lengths range between 1.607 (3) and 2.331 (3) \AA and are given in Table 1. The O atoms in the decavanadate anions are the same terminal $\left(\mathrm{O}_{\mathrm{t}}\right)$ and bridging $\left(\mathrm{O}_{\mathrm{b}}\right)$ types as those classified in the previous report by Lee et al. (2003). All atoms in (I) are on general positions, except atoms Na 2 and Na 3 , which are located on a twofold axis.

The K^{+}ion is coordinated by nine O atoms, $\left[\mathrm{K}\left(\mathrm{O}_{\mathrm{c}}\right)\left(\mathrm{O}_{\mathrm{t}}\right)_{4}\left(\mathrm{O}_{\mathrm{w}}\right)_{4}\right]$, and the three Na^{+}ions are coordinated by six O atoms each, viz. $\left[\mathrm{Na} 1\left(\mathrm{O}_{\mathrm{w}}\right)_{6}\right],\left[\mathrm{Na} 2\left(\mathrm{O}_{\mathrm{w}}\right)_{4}\left(\mathrm{O}_{\mathrm{b}}\right)_{2}\right]$ and $\left[\mathrm{Na} 3\left(\mathrm{O}_{\mathrm{w}}\right)_{4}\left(\mathrm{O}_{\mathrm{t}}\right)_{2}\right]$. The bond-valence sum (Brown \& Altermatt, 1985; Brese \& O'Keeffe, 1991) of K^{+}is 0.939 , and those of atoms $\mathrm{Na}^{+}, \mathrm{Na}^{+}$and Na^{+}are 1.203, 1.136 and 1.224, respectively.

The $\mathrm{O}_{\mathrm{w}} 9$ water molecule does not coordinate to any cations, but it is hydrogen bonded to atom $\mathrm{O}_{\mathrm{b}} 6\left(1-x, y, \frac{1}{2}-z\right)$ at a distance of 3.054 (6) A. By sharing edges and faces, the $\left[\mathrm{KO}_{9}\right]$ and $\left[\mathrm{NaO}_{6}\right]$ polyhedra form linear chains extending parallel to [101] (Fig. 2). These chains are made up of eight-membered rings, $\mathrm{K} / \mathrm{Na} 1 / \mathrm{Na} 2 / \mathrm{Na} 3 / \mathrm{K}^{\mathrm{ii}} / \mathrm{Na} 1^{\mathrm{ii}} / \mathrm{Na}^{\mathrm{ii}} / \mathrm{Na}^{\text {ii }}$ (symmetry code as in Fig. 2), and are interconnected by the decavanadate anions to form a three-dimensional network (Fig. 3).

Figure 3
A polyhedral representation of the unit-cell contents of (I), viewed approximately down the b axis.

Table 2 lists the remaining hydrogen-bond distances involving solvent water molecules with $\mathrm{O} \cdots \mathrm{O}$ less than $3.1 \AA$.

Experimental

Commercially available reagent grade KVO_{3} (Aldrich), NaCl (Junsei) and HNO_{3} (Junsei) were used. Compound (I) was crystallized by mixing hot aqueous solutions of $\mathrm{KVO}_{3}(2.0 \mathrm{~g}$ in 40 ml$)$ and $\mathrm{NaCl}(1.7 \mathrm{~g}$ in 20 ml$)$, and adjusting the pH to about 6.8 by adding a $3 M \mathrm{HNO}_{3}$ solution dropwise while vigorously stirring. The solution was concentrated to about 20 ml in a water bath. After 1 d , palebrown crystals of pseudo-hexagonal habit were isolated at room temperature. Thermogravimetric analysis, carried out in a flow of air, showed a weight loss of 8.51% in a single broad step between 315 and 573 K .

Crystal data

$\mathrm{Na}_{4} \mathrm{~K}_{2}\left[\mathrm{~V}_{10} \mathrm{O}_{28}\right] \cdot 18 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=1451.85$
Monoclinic, $C 2 / c$
$a=17.738(2) \AA$
$b=12.636(1) \AA$
$c=20.042(5) \AA$
$\beta=116.114(9)^{\circ}$
$V=4033.6(11) \AA^{3}$

$$
Z=4
$$

$D_{x}=2.391 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=2.59 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Hexagonal prism, pale brown $0.68 \times 0.62 \times 0.53 \mathrm{~mm}$

Data collection

[^1][^2]
Refinement

Refinement on F^{2}

$$
\begin{aligned}
& \begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0413 P)^{2}\right. \\
&\quad+29.2336 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.62 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.55 \mathrm{e}^{-3} \\
& \text { Extinction correction: } \text { SHELXL97 } \\
& \quad \text { (Sheldrick, 1997) } \\
& \text { Extinction coefficient: } 0.00091
\end{aligned} \text { (5) }
\end{aligned}
$$

Table 1
Selected bond lengths (A).

V1...V2	3.078 (1)	V4-OB6	1.809 (3)
$\mathrm{V} 1 \cdots \mathrm{~V} 3^{\mathrm{i}}$	3.083 (1)	V4-OB7	1.862 (3)
V1...V4	3.169 (1)	V4-OT13	1.610 (3)
V1...V5	3.150 (1)	V5-OH1	2.236 (3)
V2...V3	3.090 (1)	V5-OC2 ${ }^{\text {i }}$	1.994 (3)
V2...V4	3.116 (1)	V5-OC3	2.009 (3)
V2...V5	3.122 (1)	V5-OB8	1.839 (3)
V3...V4	3.123 (1)	V5-OB9	1.818 (3)
V3...V5	3.124 (1)	V5-OT14	1.617 (3)
$\mathrm{V} 4 \cdots \mathrm{~V} 5^{\text {i }}$	3.060 (1)	K-OW3	2.882 (4)
V1-OH1	2.123 (3)	K-OW4	2.885 (5)
$\mathrm{V} 1-\mathrm{OH} 1^{\mathrm{i}}$	2.125 (3)	$\mathrm{K}-\mathrm{O} T 13^{\mathrm{i}}$	2.931 (4)
V1-OC2	1.958 (3)	$\mathrm{K}-\mathrm{O} T 11^{\text {ii }}$	2.947 (4)
V1-OC3	1.892 (3)	$\mathrm{K}-\mathrm{O} T 12^{\text {iii }}$	2.990 (4)
V1-OB4	1.692 (3)	K-OW1	3.028 (6)
V1-OB10	1.699 (3)	K-OW2	3.079 (6)
$\mathrm{V} 2-\mathrm{OH} 1$	2.331 (3)	K-OT14	2.933 (4)
$\mathrm{V} 2-\mathrm{OB4}$	2.034 (3)	K-OC3	3.111 (3)
V2-OB5	1.839 (3)	Na1-OW3	2.387 (4)
V2-OB6	1.891 (3)	Na1-OW2	2.383 (6)
$\mathrm{V} 2-\mathrm{OB} 8$	1.865 (3)	Na1-OW7	2.399 (4)
V2-OT11	1.607 (3)	Na1-OW4	2.399 (4)
V3-OH1	2.324 (3)	Na1-OW5	2.400 (4)
V3-OB5	1.843 (3)	Na1-OW6	2.419 (5)
V3-OB7	1.853 (3)	Na2-OW7	2.370 (4)
V3-OB9	1.901 (3)	Na2-OW8	2.402 (4)
$\mathrm{V} 3-\mathrm{OB} 10^{\text {i }}$	2.049 (3)	$\mathrm{Na} 2-\mathrm{OB} 10$	2.497 (3)
V3-OT12	1.614 (3)	$\mathrm{Na} 3-\mathrm{OW} 1^{\text {iv }}$	2.338 (5)
V4-OH1	2.233 (3)	Na3-OW8	2.389 (4)
$\mathrm{V} 4-\mathrm{OC} 2$	1.975 (3)	$\mathrm{Na} 3-\mathrm{OT} 12{ }^{\text {v }}$	2.456 (3)
V4-OC3 ${ }^{\text {i }}$	2.025 (3)		

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	H \cdots A	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} W 1-\mathrm{H} W 1 A \cdots \mathrm{OW} 5^{\text {vi }}$	0.97	2.07	2.989 (7)	157
$\mathrm{OW} 1-\mathrm{H} W 1 B \cdots \mathrm{OW} 9^{\text {ii }}$	0.97	2.33	3.082 (7)	134
$\mathrm{OW} 2-\mathrm{H} W 2 B \cdots \mathrm{OB} 7^{\text {7iii }}$	0.82 (7)	2.04 (7)	2.842 (5)	165 (7)
$\mathrm{OW} 2-\mathrm{H} W 2 A \cdots \mathrm{OB7}{ }^{\text {i }}$	0.77 (7)	2.13 (7)	2.892 (5)	171 (7)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} W 3-\mathrm{H} W 3 A \cdots \mathrm{O} B 5^{\mathrm{iII}}$	0.97	1.90	$2.826(5)$	158
$\mathrm{O} W 3-\mathrm{H} W 3 B \cdots \mathrm{O} B 5^{\mathrm{ii}}$	0.97	1.92	$2.864(5)$	163
$\mathrm{O} W 4-\mathrm{H} W 4 A \cdots \mathrm{O} B 8^{\mathrm{ii}}$	0.97	1.93	$2.820(5)$	151
$\mathrm{O} W 4-\mathrm{H} W 4 B \cdots \mathrm{O} B 8$	0.97	2.24	$2.956(5)$	130
$\mathrm{O} W 5-\mathrm{H} W 5 B \cdots \mathrm{O} B 9^{\mathrm{ii}}$	0.96	1.95	$2.847(5)$	154
$\mathrm{O} W 5-\mathrm{H} W 5 A \cdots \mathrm{O} T 13^{\text {vii }}$	0.96	2.18	$2.941(5)$	136
$\mathrm{O} W 6-\mathrm{H} W 6 B \cdots \mathrm{O} B 6^{\mathrm{iii}}$	0.97	2.16	$2.871(5)$	130
$\mathrm{O} W 6-\mathrm{H} W 6 A \cdots \mathrm{O} T 14^{\mathrm{v}}$	0.95	2.58	$2.908(5)$	101
$\mathrm{O} W 7-\mathrm{H} W 7 A \cdots \mathrm{O} 2^{\mathrm{vii}}$	0.97	1.90	$2.838(5)$	161
$\mathrm{O} W 7-\mathrm{H} W 7 B \cdots \mathrm{O} W 9$	0.97	1.97	$2.889(7)$	158
$\mathrm{O} W 8-\mathrm{H} W 8 B \cdots \mathrm{O} B 9^{\mathrm{i}}$	0.97	2.08	$2.903(5)$	142

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $-x+\frac{3}{2},-y+\frac{1}{2},-z+1$; (iii) $x+\frac{1}{2}, y+\frac{1}{2}, z ;$ (v) $x,-y+1, z-\frac{1}{2}$; (vi) $x,-y+1, z+\frac{1}{2}$; (vii) $-x+1, y,-z+\frac{1}{2}$.

A first data collection from a smaller crystal $(0.44 \times 0.25 \times$ 0.25 mm) revealed a monoclinic cell with $a=17.737$ (3), $b=12.635$ (2) and $c=10.019(2) \AA$, and $\beta=116.11(1)^{\circ}$. Refinement in space group $C 2 / m$ converged with similar R values, but some of the atoms were disordered. A second data collection using a larger crystal (this study) gave the correct space group ($C 2 / c$) with a doubling of the c axis compared with the first measurement. The H atoms of the water molecules were included in the final cycles of refinement in a riding model, with $\mathrm{O}-\mathrm{H}$ distances ranging from 0.77 to $0.97 \AA$ and $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ angles ranging from 100.8 to $171(7)^{\circ}$. The H atoms of the OW9 water molecule could not be positioned geometrically or located in an electron-density map. They were therefore excluded from the refinement.

Data collection: STADI4 (Stoe \& Cie, 1996); cell refinement: STADI4; data reduction: X-RED (Stoe \& Cie, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

References

Brandenburg, K. (1998). DIAMOND. Version 2.1. Crystal Impact GbR. Bonn, Germany.
Brese, N. E. \& O’Keeffe, M. (1991). Acta Cryst. B47, 192-197.
Brown, I. D. \& Altermatt, D. (1985). Acta Cryst. B41, 244-247.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Ksiksi, R., Graia, M. \& Jouini, T. (2005). Acta Cryst. E61, i177-i179.
Lee, U., Jung, Y. H. \& Joo, H. C. (2003). Acta Cryst. E59, i72-i74.
Lee, U. \& Joo, H.-C. (2003). Acta Cryst. E59, i122-i124.
Lee, U. \& Joo, H.-C. (2004). Acta Cryst. E60, i22-i24.
Ma, C.-A., Xie, A.-L. \& Wang, L.-B. (2005). Acta Cryst. E61, i185-i187.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (1996). STADI4 (Version 1.09), X-RED (Version 1.09) and X-SHAPE (Version 1.06). Stoe \& Cie, Darmstadt, Germany.

[^0]: © 2006 International Union of Crystallography All rights reserved

[^1]: Stoe Stadi-4 diffractometer $\omega / 2 \theta$ scans
 Absorption correction: numerical (X-SHAPE; Stoe \& Cie, 1996)
 $T_{\text {min }}=0.192, T_{\text {max }}=0.234$
 4595 measured reflections

[^2]: 4595 independent reflections 3143 reflections with $I>2 \sigma(I)$
 $\theta_{\text {max }}=27.5^{\circ}$
 3 standard reflections frequency: 60 min intensity decay: 3.8%

